What’s up with calling a woman “a female”? A look at the parts of speech of “male” and “female” on Twitter .

This is something I’ve written about before, but I’ve recently had several discussions with people who say they don’t find it odd to refer to a women as a female. Personally, I don’t like being called “a female” becuase its a term I to associate strongly with talking about animals. (Plus, it makes you sound like a Ferengi.)  I would also protest men being called males, for the same reason, but my intuition is that that doesn’t happen as often. I’m willing to admit that my intuition may be wrong in this case, though, so I’ve decided to take a more data-driven approach. I had two main questions:

  • Do “male” and “female” get used as nouns at different rates?
  • Does one of these terms get used more often?

Data collection

I used the Twitter public API to collect two thousand English tweets, one thousand each containing the exact string “a male” and “a female”. I looked for these strings to help get as many tweets as possible with “male” or “female” used as a noun. “A” is what linguist call a determiner, and a determiner has to have a noun after it. It doesn’t have to be the very next word, though; you can get an adjective first, like so:

  • A female mathematician proved the theorm.
  • A female proved the theorm.

So this will let me directly compare these words in a situation where we should only be able to see a limited number of possible parts of speech & see if they differ from each other. Rather than tagging two thousand tweets by hand, I used a Twitter specific part-of-speech tagger to tag each set of tweets.

A part of speech tagger is a tool that guesses the part of speech of every word in a text. So if you tag a sentence like “Apples are tasty”, you should get back that “apples” is a plural noun, “are” is a verb and “tasty” is an adjective. You can try one out for yourself on-line here.

Parts of Speech

In line with my predictions, every instance of “male” or “female” was tagged as either a noun, an adjective or a hashtag. (I went through and looked at the hashtags and they were all porn bots. #gross #hazardsOfTwitterData)

However, not every noun was tagged as the same type of noun. I saw three types of tags in my data: NN (regular old noun), NNS (plural noun) and, unexpectedly, NNP (proper noun, singular). (If you’re confused by the weird upper case abbreviations, they’re the tags used in the Penn Treebank, and you can see the full list here.) In case it’s been a while since you studied parts of speech, proper nouns are things like personal or place names. The stuff that tend to get capitalized in English. The examples from the Penn Treebank documentation include “Motown”, “Venneboerger”,  and “Czestochwa”. I wouldn’t consider either “female” or “male” a name, so it’s super weird that they’re getting tagged as proper nouns. What’s even weirder? It’s pretty much only “male” that’s getting tagged as a proper noun, as you can see below:

maleVsFemalePOS

Number of times each word tagged as each part of speech by the GATE Twitter part-of-speech tagger. NNS is a plural noun, NNP a proper noun, NN a noun and JJ an adjective.

The differences in tagged POS between “male” and “female” was super robust(X2(6, N = 2033) = 1019.2, p <.01.). So what’s happening here?  My first thought was that it might be that, for some reason, “male” is getting capitalized more often and that was confusing the tagger. But when I looked into, there wasn’t a strong difference between the capitalization of “male” and “female”: both were capitalized about 3% of the time. 

My second thought was that it was a weirdness showing up becuase I used a tagger designed for Twitter data. Twitter is notoriously “messy” (in the sense that it can be hard for computers to deal with) so it wouldn’t be surprising if tagging “male” as a proper noun is the result of the tagger being trained on Twitter data. So, to check that, I re-tagged the same data using the Stanford POS tagger. And, sure enough, the weird thing where “male” is overwhelming tagged as a proper noun disappeared.

stanfordTaggerPOS

Number of times each word tagged as each part of speech by the Stanford POS tagger. NNS is a plural noun, NNP a proper noun, NN a noun, JJ an adjective and FW a “foreign word”.

So it looks like “male” being tagged as a proper noun is an artifact of the tagger being trained on Twitter data, and once we use a tagger trained on a different set of texts (in this case the Wall Street Journal) there wasn’t a strong difference in what POS “male” and “female” were tagged as.

Rate of Use

That said, there was a strong difference between “a female” and “a male”: how often they get used. In order to get one thousand tweets with the exact string “a female”, Twitter had to go back an hour and thirty-four minutes. In order to get a thousand tweets with “a male”, however, Twitter had to go back two hours and fifty eight minutes. Based on this sample, “a female” gets said almost twice as often as “a male”.

So what’s the deal?

  • Do “male” and “female” get used as nouns at different rates?  It depends on what tagger you use! In all seriousness, though, I’m not prepared to claim this based on the dataset I’ve collected.
  • Does one of these terms get used more often? Yes! Based on my sample, Twitter users use “a female” about twice as often as “a male”.

I think the greater rate of use of “a female” that points to the possibility of an interesting underlying difference in how “male” and “female” are used, one that calls for a closer qualitative analysis. Does one term get used to describe animals more often than the other? What sort of topics are people talking about when they say “a male” and “a female”? These questions, however, will have to wait for the next blog post!

In the meantime, I’m interested in getting more opinions on this. How do you feel about using “a male” and “a female” as nouns to talk about humans? Do they sound OK or strike you as odd?

My code and is available on my GitHub.

Advertisements

Preference for wake words varies by user gender

I recently read a very interesting article on the design of aspects of choosing a wake word, the word you use to turn on a voice-activated system. In Star Trek it’s “Computer”, but these days two of the more popular ones are “Alexa” and “OK Google”. The article’s author was a designer and noted that she found “Ok Google” or “Hey Google” to be more pleasant to use than “Alexa”. As I was reading the comments (I know, I know) I noticed that a lot of the people who strongly protested that they preferred “Alexa” had usernames or avatars that I would associate with male users. It struck me that there might be an underlying social pattern here.

So, being the type of nerd I am, I whipped up a quick little survey to look at the interaction between user gender and their preference for wake words. The survey only had two questions:

  • What is your gender?
    • Male
    • Female
    • Other
  • If Google Home and the Echo offered identical performance in all ways except for the wake word (the word or phrase you use to wake the device and begin talking to it), which wake word would you prefer?
    • “Ok Google” or “Hey Google”
    • “Alexa”

I included only those options becuase those are the defaults–I am aware you can choose to change the Echo’s wake word. (And probably should, given recent events.) 67 people responded to my survey. (If you were one of them, thanks!)

So what were the results? They were actually pretty strongly in line with my initial observations: as a group, only men preferred “Alexa” to “Ok Google”. Furthermore, this preference was far weaker than people of other genders’ for “Ok Google”. Women preferred “Ok Google” at a rate of almost two-to-one, and no people of other genders preferred “Alexa”.

I did have a bit of a skewed sample, with more women than men and people of other genders, but the differences between genders were robust enough to be statistically significant (c2(2, N = 67) = 7.25, p = 0.02)).

genderandwakewords

Women preferred “Ok Google” to “Alexa” 27:11, men preferred “Alexa” to “Ok Google” 14:11, and the four people of other genders in my survey all preferred “Ok Google”.

So what’s the take-away? Well, for one, Johna Paolino (the author of the original article) is by no means alone in her preference for a non-gendered wake word. More broadly, I think that, like the Clippy debacle, this is excellent evidence that there are strong gendered differences in how users’ gender affects their interaction with virtual agents. If you’re working to create virtual agents, it’s important to consider all types of users or you might end up creating something that rubs more than half of your potential customers the wrong way.

My code and data are available here.