Can your use of capitalization reveal your political affiliation?

This week, I’m in Vancouver this week for the meeting of the Association for Computational Linguistics. (On the subject of conferences, don’t forget that my offer to help linguistics students from underrepresented minorities with the cost of conferences still stands!) The work I’m presenting is on a new research direction I’m pursuing and I wanted to share it with y’all!

If you’ve read some of my other posts on sociolinguistics, you may remember that the one of its central ideas is that certain types of language usage pattern together with aspects of people’s social identities. In the US, for example, calling a group of people “yinz” is associated with being from Pittsburgh. Or in Spanish, replacing certain “s” sounds with “th” sounds is associated with being from northern or central Spain. When a particular linguistic form is associated with a specific part of someone’s social identity, we call that a “sociolinguistic variable”

There’s been a lot of work on the type of sociolinguistic variables people use when they’re speaking, but there’s been less work on what people do when they’re writing. And this does make a certain amount of sense: many sociolinguistic variables are either 1) something people aren’t aware they’re doing or 2) something that they’re aware they’re doing but might not consider “proper”. As a result, they tend not to show up in formal writing.

This is where the computational linguistics part comes in; people do a lot of informal writing on computers, especially on the internet. In fact, I’d wager that humans are producing more text now than at any other point in history, and a lot of it is produced in public places. That lets us look for sociolinguistics variables in writing in a way that wasn’t really possible before.

Which is a whole lot of background to be able to say: I’m looking at how punctuation and capitalization pattern with political affiliation on Twitter.

Political affiliation is something that other sociolinguists have definitely looked at. It’s also something that’s very, very noticeable on Twitter these days. This is actually a boon to this type of research. One of the hard things about doing research on Twitter is that you don’t always necessarily know someone’s social identity. And if you use a linguistic feature to try to figure out their identity when what you’re interested in is linguistic features, you quickly end up with the problem of circular logic.

Accounts which are politically active, however, will often explicitly state their political affiliation in their Twitter bio. And I used that information to get tweets from people I was very sure had a specific political affiliation.

For this project, I looked at people who use the hashtags #MAGA and #theResistance in their Twitter bios. The former is an initialism for “Make America Great Again” and is used by politically conservative folks who support President Trump. The latter is used by political liberal folks who are explicitly opposed to President Trump. These two groups not only have different political identities, but also are directly opposed to each other. This means there’s good reason to believe that they will use language in different ways that reflect that identity.

But what about the linguistic half of the equation? Punctuation and capitalization are especially interesting to me because they seem to be capturing some of the same information we might find in prosody or intonation in spoken language. Things like YELLING or…pausing….or… uncertainty?  They’re also much, much easier to measure punctuation than intonation, which is notoriously difficult and time-consuming to annotate.  At the same time, I have good evidence that how you use punctuation and capitalization has some social meaning. Check out this tweet, for example:

0b1022106daeb0d0419263dcf9c5aa93--this-is-me-posts

As this tweet shows, putting a capital letter at the beginning of a tweet is anything but “aloof and uninterested yet woke and humorous”.

So, if punctuation and capitalization are doing something socially, is part of what they’re doing expressing political affiliation?

That’s what I looked into. I grabbed up to 100 tweets each from accounts which used either #MAGA or #theResistance in their Twitter bios. Then I looked at how much punctuation and capitalization users from these two groups used in their tweets.

Punctuation

First, I looked at all punctuation marks. I did find that, on average, liberal users tended to use less punctuation. But when I took a closer look at the data, an interesting pattern emerged. In both the liberal and conservative groups, there were two clusters of users: those who used a lot of punctuation and those who used almost none.

punctuation

Politically liberal users on average tended to use less punctuation than politically conservative users, but in both groups there’s really two sets of users: those who use a lot of punctuation and those who use basically  none. There just happen to be more of the latter in #theResistance.

What gives rise to these two clusters? I honestly don’t know, but I do have a hypothesis. I think that there’s  probably a second social variable in this data that I wasn’t able to control for. It seems likely that the user’s age might have something to do with it, or their education level, or even whether they use thier Twitter account for professional or personal communication.

Capitalization

My intuition that there’s a second latent variable at work in this data is even stronger given the results for the amount of capitalization folks used. Conservative users tended to use more capitalization than the average liberal user, but there was a really strong bi-modal distribution for the liberal accounts.

Rplot

Again, we see that conservative accounts use more of the marker (in this case capitalization), but that there’s a strong bi-modal distribution in the liberal users’ data.

What’s more, the liberal accounts that used a lot of punctuation also tended to use a lot of capitalization. Since these features are both ones that I associate with very “proper” usage (things like always starting a tweet with a capital letter, and ending it with a period) this seems to suggest that some liberal accounts are very standardized in their use of language, while others reject at least some of those standards.

So what’s the answer the question I posed in the title? Can capitalization or punctuation reveal political affiliation? For now, I’m going to go with a solid “maybe”. Users who use very little capitalization and punctuation are more likely to be liberal… but so are users who use a lot of both. And, while I’m on the subject of caveats, keep in mind that I was only looking at very politically active accounts who discuss thier politics in their user bios.  These observations probably don’t apply to all Twitter accounts (and certainly not across different languages).

If you’re interested in reading more, you can check out the fancy-pants versions of this research here and here.  And I definitely intend to consider looking at this; I’ll keep y’all posted on my findings. For now, however, off to find me a Nanimo bar!

Advertisements

Where 👏 do 👏 the 👏 claps 👏 go 👏 when 👏 you 👏 write 👏 like 👏 this 👏?

You may already be familiar with the phenomena I’m going to be talking about today: when someone punctuates some text with the clap emoji. It’s a pretty transparent gestural scoring and (for me) immediately brings to mind the way my mom would clap with every word when she was particularly exasperated with my sibling and I (it was usually along with speech like “let’s go, let’s go, let’s go” or “get up now”). It looks like so:

This innovation, which started on Black Twitter is really interesting to me because it ties in with my earlier work on emoji ordering. I want to know where emojis go, particularly in relation to other words. Especially since people have since extended this usage to other emoji, like the US Flag:

Logically, there are several different ways you can intersperse clap emojis with text:

  • Claps 👏  are 👏 used 👏 between 👏 every 👏 word.
  •  👏 Claps 👏 are 👏 used 👏 around 👏 every 👏 word. 👏
  •  👏 Claps 👏 are 👏 used 👏 before 👏 every 👏 word.
  • Claps 👏 are 👏 used 👏 after 👏 every 👏 word. 👏
  • Claps 👏 are used 👏 between phrases 👏 not words

I want to know which of these best describes what people actually do. I’m not aiming to write an internet style guide, but I am hoping to characterize this phenomena in a general way: this is how most people who do this do it, and if you want to use this style in a natural way, you should probably do it the same way.

Data

I used Fireant to grab 10,000 tweets from the Twitter streaming API which had the clap emoji in them at least once. (Twitter doesn’t let you search for a certain number of matches of the same string. If you search for “blob” and “blob blob” you’ll get the same set of results.)

Analysis

From that set of 10,000 tweets, I took only the tweets that had a clap emoji followed by a word followed by another clap emoji and threw out any repeats. That left me with 260 tweets. (This may seem pretty small compared to my starting dataset, but there were a lot of retweets in there, and I didn’t want to count anything twice.) Then I removed @usernames, since those show up in the beginning of any tweet that’s a reply to someone, and URL’s, which I don’t really think of as “words”. Finally, I looked at each word in a tweet and marked whether it was a clap or not. You can see the results of that here:

timecourse

The “word” axis represents which word in the tweet we’re looking at: the first, second, third, etc. The red portion of the bar are the words that are the clap emoji. The yellow portion is the words that aren’t. (BTW, big shoutout to Hadley Wickham’s emo(ji) package for letting me include emoji in plots!)

From this we can see a clear pattern: almost no one starts a tweet with an emoji, but most people follow the first word with an emoji. The up-down-up-down pattern means that people are alternating the clap emoji with one word. So if we look back at our hypotheses about how emoji are used, we can see right off the bat that three of them are wrong:

  • Claps 👏  are 👏 used 👏 between 👏 every 👏 word.
  •  👏 Claps 👏 are 👏 used 👏 around 👏 every 👏 word. 👏
  •  👏 Claps 👏 are 👏 used 👏 before 👏 every 👏 word.
  • Claps 👏 are 👏 used 👏 after 👏 every 👏 word. 👏
  • Claps 👏 are used 👏 between phrases 👏 not words

We can pick between the two remaining hypotheses by looking at whether people are ending thier tweets with a clap emoji. As it turns out, the answer is “yes”, more often than not.

endWithClap

If they’re using this clapping-between-words pattern (sometimes called the “ratchet clap“) people are statistically more likely to end their tweet with a clap emoji than with a different word or non-clap emoji. This means the most common pattern is to use 👏 a 👏 clap 👏 after 👏 every 👏 word, 👏  including  👏 the  👏 last. 👏

This makes intuitive sense to me. This pattern is mimicking someone is clapping on every word. Since we can’t put emoji on top of words to indicate that they’re happening at the same time, putting them after makes good intuitive sense. In some sense, each emoji is “attached” to the word that comes before it in a similar way to how “quickly” is “attached” to “run” in the phrase “run quickly”. It makes less sense to put emoji between words, becuase then you end up with less claps than words, which doesn’t line up well with the way this is done in speech.

The “clap after every word” pattern is also what this website that automatically puts claps in your tweets does, so I’m pretty positive this is a good characterization of community norms.

 

So there you have it! If you’re going to put clap emoji in your tweets, you should probably do 👏 it 👏 like 👏 this. 👏 It’s not wrong if you don’t, but it does look kind of weird.

Meme Grammar

So the goal of linguistics is to find and describe the systematic ways in which humans use language. And boy howdy do we humans love using language systematically. A great example of this is internet memes.

What are internet memes? Well, let’s start with the idea of a “meme”. “Memes” were posited by Richard Dawkin in his book The Selfish Gene. He used the term to describe cultural ideas that are transmitted from individual to individual much like a virus or bacteria. The science mystique I’ve written about is a great example of a meme of this type. If you have fifteen minutes, I suggest Dan Dennett’s TED talk on the subject of memes as a much more thorough introduction.

So what about the internet part? Well, internet memes tend to be a bit narrower in their scope. Viral videos, for example, seem to be a separate category from intent memes even though they clearly fit into Dawkin’s idea of what a meme is. Generally, “internet meme” refers to a specific image and text that is associated with that image. These are generally called image macros. (For a through analysis of emerging and successful internet memes, as well as an excellent object lesson in why you shouldn’t scroll down to read the comments, I suggest Know Your Meme.) It’s the text that I’m particularly interested in here.

Memes which involve language require that it be used in a very specific way, and failure to obey these rules results in social consequences. In order to keep this post a manageable size, I’m just going to look at the use of language in the two most popular image memes, as ranked by memegenerator.net, though there is a lot more to study here. (I think a study of the differing uses of the initialisms MRW [my reaction when]  and MFW [my face when] on imgur and 4chan would show some very interesting patterns in the construction of identity in the two communities. Particularly since the 4chan community is made up of anonymous individuals and the imgur community is made up of named individuals who are attempting to gain status through points. But that’s a discussion for another day…)

The God tier (i.e. most popular) characters at on the website Meme Generator as of February 23rd, 2013. Click for link to site.

The God tier (i.e. most popular) characters at on the website Meme Generator as of February 23rd, 2013. Click for link to site. If you don’t recognize all of these characters, congratulations on not spending all your free time on the internet.

Without further ado, let’s get to the grammar. (I know y’all are excited.)

Y U No

This meme is particularly interesting because its page on Meme Generator already has a grammatical description.

The Y U No meme actually began as Y U No Guy but eventually evolved into simply Y U No, the phrase being generally followed by some often ridiculous suggestion. Originally, the face of Y U No guy was taken from Japanese cartoon Gantz’ Chapter 55: Naked King, edited, and placed on a pink wallpaper. The text for the item reads “I TXT U … Y U NO TXTBAK?!” It appeared as a Tumblr file, garnering over 10,000 likes and reblogs.

It went totally viral, and has morphed into hundreds of different forms with a similar theme. When it was uploaded to MemeGenerator in a format that was editable, it really took off. The formula used was : “(X, subject noun), [WH]Y [YO]U NO (Y, verb)?”[Bold mine.]

A pretty good try, but it can definitely be improved upon. There are always two distinct groupings of text in this meme, always in impact font, white with a black border and in all caps. This is pretty consistent across all image macros. In order to indicate the break between the two text chunks, I will use — throughout this post. The chunk of text that appears above the image is a noun phrase that directly addresses someone or something, often a famous individual or corporation. The bottom text starts with “Y U NO” and finishes with a verb phrase. The verb phrase is an activity or action that the addressee from the first block of text could or should have done, and that the meme creator considers positive. It is also inflected as if “Y U NO” were structurally equivalent to “Why didn’t you”. So, since you would ask Steve Jobs “Why didn’t you donate more money to charity?”, a grammatical meme to that effect would be “STEVE JOBS — Y U NO DONATE MORE MONEY TO CHARITY”. In effect, this meme questions someone or thing who had the agency to do something positive why they chose not to do that thing. While this certainly has the potential to be a vehicle for social commentary, like most memes it’s mostly used for comedic effect. Finally, there is some variation in the punctuation of this meme. While no punctuation is the most common, an exclamation points, a question mark or both are all used. I would hypothesize that the the use of punctuation varies between internet communities… but I don’t really have the time or space to get into that here.

A meme (created by me using Meme Generator) following the guidelines outlined above.

Futurama Fry

This meme also has a brief grammatical analysis

The text surrounding the meme picture, as with other memes, follows a set formula. This phrasal template goes as follows: “Not sure if (insert thing)”, with the bottom line then reading “or just (other thing)”. It was first utilized in another meme entitled “I see what you did there”, where Fry is shown in two panels, with the first one with him in a wide-eyed expression of surprise, and the second one with the familiar half-lidded expression.

As an example of the phrasal template, Futurama Fry can be seen saying: “Not sure if just smart …. Or British”. Another example would be “Not sure if highbeams … or just bright headlights”. The main form of the meme seems to be with the text “Not sure if trolling or just stupid”.

This meme is particularly interesting because there seems to an extremely rigid syntactic structure. The phrase follow the form “NOT SURE IF _____ — OR _____”. The first blank can either be filled by a complete sentence or a subject complement while the second blank must be filled by a subject complement. Subject complements, also called predicates (But only by linguists; if you learned about predicates in school it’s probably something different. A subject complement is more like a predicate adjective or predicate noun.), are everything that can come after a form of the verb “to be” in a sentence. So, in a sentence like “It is raining”, “raining” is the subject complement. So, for the Futurama Fry meme, if you wanted to indicate that you were uncertain whther it was raining or sleeting, both of these forms would be correct:

  • NOT SURE IF IT’S RAINING — OR SLEETING
  • NOT SURE IF RAINING — OR SLEETING

Note that, if a complete sentence is used and abbreviation is possible, it must be abbreviated. Thus the following sentence is not a good Futurama Fry sentence:

  • *NOT SURE IF IT IS RAINING — OR SLEETING

This is particularly interesting  because the “phrasal template” description does not include this distinction, but it is quite robust. This is a great example of how humans notice and perpetuate linguistic patterns that they aren’t necessarily aware of.

A meme (created by me using Meme Generator) following the guidelines outlined above. If you’re not sure whether it’s phonetics or phonology, may I recommend this post as a quick refresher?

So this is obviously very interesting to a linguist, since we’re really interested in extracting and distilling those patterns. But why is this useful/interesting to those of you who aren’t linguists? A couple of reasons.

  1. I hope you find it at least a little interesting and that it helps to enrich your knowledge of your experience as a human. Our capacity for patterning is so robust that it affects almost every aspect of our existence and yet it’s easy to forget that, to let our awareness of that slip our of our conscious minds. Some patterns deserve to be examined and criticized, though, and  linguistics provides an excellent low-risk training ground for that kind of analysis.
  2. If you are involved in internet communities I hope you can use this new knowledge to avoid the social consequences of violating meme grammars. These consequences can range from a gentle reprimand to mockery and scorn The gatekeepers of internet culture are many, vigilant and vicious.
  3. As with much linguistic inquiry, accurately noting and describing these patterns is the first step towards being able to use them in a useful way. I can think of many uses, for example, of a program that did large-scale sentiment analyses of image macros but was able to determine which were grammatical (and therefore more likely to be accepted and propagated by internet communities) and which were not.