What you can, can’t and shouldn’t do with social media data

Earlier this summer, I gave a talk on the promise & pitfalls of social media data for the Joint Statistical Meetings. While I don’t think there’s a recording of the talk, enough people asked for one that I figured it would be worth putting together a blog post version of the talk. Enjoy!


What you can do with social media data

Let’s start with the good news: research using social media data has revolutionized social science research. It’s let us ask bigger question more quickly, helped us overcome some of the key drawbacks of behavioral experimental work and ask new kinds of questions.

More data faster

I can’t overstate how revolutionary the easy availability of social media data has been, especially in linguistics. It has increased both the rate and scale of data collection by orders of magnitude. Compare the time it took to compare the Dictionary of American Regional English (DARE) to the Wordmapper app below. The results are more or less the same, maps of where in the US folks use different words (in this example, “cellar”). But what once took the entire careers of multiple researchers can now be done in a few months, and with far higher resolution.

Dictionary of American Regional English (DARE) Word Mapper App
Data collection 48 years (1965 – 2013) <1 year
Size of team 2,777 people 4 people
Number of participants 1,843 people 20 million
DARE map Wordmapper Map

Social networks

Social media sites with a following or friend feature also let us ask really large scale questions about social networks. How do social networks and political affiliation interact? How does language change move through a social network? What characteristics of social network structure are more closely associated with the spread of misinformation? Of course, we could ask these questions before social media data… but by using APIs to access social media data, we reduce the timescale of these projects from decades to weeks or even days and we have a clear way to operationalize social network ties. It’s fairly hard for someone to sit down and list everyone they interact with face-to-face, but it’s very easy to grab a list of all the Twitter accounts you follow.

Wild-caught, all natural data

One of the constant struggles in experimental work is the fact that the mere fact of being observed changes behavior. This is known as the Hawthorne Effect in psychology or the Observer’s Paradox in sociolinguistics. As a result, even the most well-designed experiment is limited by the fact that the participants know that they are completing an experiment.

Social media data, however, doesn’t have this limitation. Since most social media research projects are conducted on public data without interacting directly with participants, they are not generally considered human subjects research. When you post something on a public social media account, you don’t have a reasonable expectation of privacy. In other words, you know that just anyone could come along and read it, and that includes researchers. As a result it is not generally necessary to collect informed consent for social media projects. (Informed consent is when you are told exactly what’s going to happen during an experiment you’re participating, and you agree to participate in it.) This means that the vast majority of folks who are participating in a social media study don’t actually know that they’re part of a study.

The benefit of this is that it allows researchers to get around three common confounds that plague social science research:

  • Bradley effect: People tend to tell researchers what they think they want to hear
  • Response bias: The sample of people willing to do an experiment/survey differ in a meaningful way from the population as a whole
  • Observer’s paradox/Hawthorne effect: People change their behavior when they know they’re being observed

While this is a boon to researchers, the lack of informed consent does introduce other other problems, which we’ll talk about later.

What you can’t do with social media data

Of course, all the benefits of social media come at a cost. There are several key drawbacks and limitations of social media research:

  • You can’t be sure who your participants are.
  • There’s inherent sampling bias.
  • You can’t violate the developer’s agreements.

You’re not sure who you’re studying…

Because you don’t meet with the people whose data is included in your study, you don’t know for sure what sorts of demographic categories they belong to, whether they are who they’re claiming to be or even if they’re human at all. You have to deal with both bots, accounts where content is produced and distributed automatically by a computer and sock puppets, where one person pretends to be another person. Sock puppets in particular can be very difficult to spot and may skew your results in unpredictable ways.

…but you can be sure your sample is biased.

Social media users aren’t randomly drawn from the world’s population as a whole. Social media users tend to be WEIRD: from wealthy, educated, industrialized, rich and democratic societies. This group is already over-represented in social science and psychology research studies, which may be subtly skewing our models of human behavior.

In addition, different social media platforms have different user bases. For example, Instagram and Snapchat tend to have younger users, Pinterest has more women (especially compared to Reddit, which skews male) and LinkedIn users tend to be highly educated and upper middle class. And that doesn’t even get to social network effects: you’re more likely to be on the same platform your friends are on, and since social networks tend to be homophilous, you can end up with pockets of very socially homogeneous folks. So, even if you manage to sample randomly from a social media platform, your sample is likely to differ from one taken from the population as a whole.

You need to abide by the developer’s agreements for whatever platform you’re using data from.

This is mainly an issue if you’re using API (application programmatic interface) to fetch data from a service. Developer’s agreements vary between platforms, but most limit the amount of data you can fetch and store, and how and if you can share it with other researchers. For example, if you’re sharing Twitter data you can only share 50,000 tweets at a time and even then only if you have to have people download a file by clicking on it. If you share any more than that, you should just share the ID’s of the tweets rather than the full tweets. (Document the Now’s Hydrator can help you fetch the tweets associated with a set of IDs.)

What you shouldn’t do with social media data

Finally, there are ethical restrictions on what we should do with social media data. As researchers, we need to 1) respect the wishes of users and 2) safeguard their best interests, especially given that we don’t (currently) generally get informed consent from the folks whose data we’re collecting.

Respecting users’ wishes

At least in the US, ethical human subjects research is led by three guiding principles set forth in the Belmont report. If you’re unfamiliar with the report, it was written in the aftermath of the Tuskegee Valley experiments. These were a series of medical experiments on African Americans men who had contracted syphilis conducted from the 1930’s to 1970’s. During the study, researchers withheld the cure (and even information that it existed) from the participants. The study directly resulted in the preventable deaths of 128 men and many health problems for study participants, their wives and children. It was a clear ethical violation of the human rights of participants and the moral stain of it continues to shape how we conduct human subjects research in the US.

The three principles of ethical human subjects research are:

  1. Respect for Persons: People should be treated as autonomous individuals and persons with diminished autonomy (like children or prisoners) are entitled to protection.
  2. Beneficence: 1) Do not harm and 2) maximize possible benefits and minimize possible harms.
  3. Justice: Both the risks and benefits of research should be distributed equally.

Social media research might not technically fall under the heading of human subjects research, since we aren’t intervening with our participants. However, I still believe that it’s important that researchers following these general guides when designing and distributing experiments.

One thing we can do is respect their wishes of the communities we study. Fortunately, we have some evidence of what those wishes are. Feisler and Proferes (2018) surveyed 368 Twitter users on their perception of a variety of research behaviors.

Screenshot from 2018-07-25 16-10-21
Fiesler, C., & Proferes, N. (2018). “Participant” Perceptions of Twitter Research Ethics. Social Media+ Society, 4(1), 2056305118763366. Table 4. 

In general, Twitter users are more OK with research with the following characteristics:

  • Large datasets
  • Analyzed automatically
  • Social media users informed about research
  • If tweets are quoted, they are anonymized. (Note that if you include the exact text, it’s possible to reverse search the quoted tweet and de-anonymize it. I recommend changing at least 20% of the content words in a tweet to synonyms to get around this and double-checking by trying to de-anonymize it yourself.)

These characteristics, however, are not as acceptable to Twitter users:

  • Small datasets
  • Analysis done by hand (presumably including analysis by Mechanical Turk workers)
  • Tweets from protected accounts or deleted tweets analyzed (which is also against the developer’s agreement, so you shouldn’t be doing this anyway)
  • Quoting with citation (very different from academic norms!)

In general, I think these suggest general best practices for researchers working with Twitter data.

  • Stick to larger datasets
  • Try to automate wherever possible
  • Follow the developer’s agreement
  • Take anonymity seriously.

There is one thing I disagree with, however: I don’t think we should contact everyone who’s tweets we use in our research.

Should we contact people whose tweets we use in our studies? My gut instinct on this one is “no”. If you’re collecting a large amount of data, you probably shouldn’t reach out to everyone in the data.

For users who don’t have open DM’s, the only way to contact them is to publicly mention them using @username. The problem with this is that it partly de-anonymizes your data. If you then choose to share your data, having publicly shared a list of whose data was included in the dataset it makes it much easier to de-anonymize. Instead of trying to figure out whose tweets were included when looking at all of Twitter, an adversary only has to figure out which of the users on the list you’ve given them is connected to which record.

The main exception to this is if have a project that’s a deep dive on one user, in which case you probably should. (For example, I contacted Chaz Smith and let him know about my phonological analysis of his #pronouncingthingsincorrectly Vines.)

Do no harm

Another aspect of ethical research is trying to ensure that your research or research data doesn’t have potentially unethical applications. The elephant in the room here, of course, is the data Cambridge Analytica collected from Facebook users. Researchers at Cambridge, collecting data for a research project, got lots of people’s permission to access their Facebook data. While that wasn’t a problem, they collected and saved Facebook data from other folks as well, who hadn’t opted in. In the end, only a half of a half of a percent of the folks whose data was in the final dataset actually agreed to be included in it. To make matters worse, this data was used by a commercial company founded by one of the researchers to (possibly) influence elections in the US and UK. Here’s a New York Times article that goes into much more detail. This has understandably lead to increased scrutiny of how social media research data is collected and used.

I’m not bringing this up to call out Facebook in particular, but to explain why it’s important to consider how research data might be used long-term. How and where will it be stored? For how long? Who will have access to it? In short, if you’re a researcher, how can you ensure that data you collected won’t end up somehow hurting the people you collected it from?

As an example of how important these questions are, consider this OK Cupid “research” dataset. It was collected without consent and shared publicly without anonymization. It included many personal details that were only intended to be shared with other users of the site, including explicit statements of sexual orientation. In addition to being an unforgivable breach of privacy, this directly endangered users whose data was collected: information on sexual orientation was shared for people living in countries where homosexuality is a crime that carries a death penalty or sentence of life in prison. I have a lot of other issues with this “study” as well, but the fact that it directly endangered research subjects who had no chance to opt out is by far the most egregious ethical breach.

If you are collecting social media data for research purposes, it is your ethical responsibility to safeguard the well-being of the people whose data you’re using.

I bring up these cautionary tales not to scare you off of social media research but to really impress the gravity of the responsibility you carry as a social media researcher. Social media data has the potential to dramatically improve our understanding of the world. A lot of my own work has relied heavily on it! But it’s important that we, as researchers, take our moral duty to make sure that we don’t end up doing more harm than good very seriously.

Advertisements

How do we use emoji?

Those of you who know me may know that I’m a big fan of emoji. I’m also a big fan of linguistics and NLP, so, naturally, I’m very curious about the linguistic roles of emoji. Since I figured some of you might also be curious, I’ve pulled together a discussion of some of the very serious scholarly research on emoji. In particular, I’m going to talk about five recent papers that explore the exact linguistic nature of these symbols: what are they and how do we use them?

Twemoji2 1f913
Emoji are more than just cute pictures! They play a set of very specific linguistic roles.

Dürscheid & Siever, 2017:

This paper makes one overarching point: emoji are not words. They cannot be unambiguously interpreted without supporting text and they do not have clear syntactic relationships to one another. Rather, the authors consider emoji to be specialized characters, and place them within Gallmann’s 1985 hierarchy of graphical signs. The authors show that emoji can play a range of roles within the Gallmann’s functional classification.

  • Allography: using emoji to replace specific characters (for example: the word “emoji” written as “em😝ji”)
  • Ideograms: using emoji to replace a specific word (example: “I’m travelling by 🚘” to mean “I’m travelling by car”)
  • Border and Sentence Intention signals: using emoji both to clarify the tone of the preceding sentence and also to show that the sentence is over, often replacing the final punctuation marks.

Based on an analysis of a Swiss German Whatsapp corpus, the authors conclude that the final category is far and away the most popular, and that emoji rarely replace any part of the lexical parts of a message.

Na’aman et al, 2017:

Na’aman and co-authors also develop a hierarchy of emoji usage, with three top-level categories: Function, Content (both of which would fall under mostly under the ideogram category in Dürscheid & Siever’s classifications) and Multimodal.

  • Function: Emoji replacing function words, including prepositions, auxiliary verbs, conjunctions, determinatives and punctuation. An example of this category would be “I like 🍩 you”, to be read as “I do not like you”.
  • Content: Emoji replacing content words and phrases, including nouns, verbs, adjectives and adverbs. An example of this would be “The 🔑 to success”, to be read as “the key to success”.
  • Multimodal: These emoji “enrich a grammatically-complete text with markers of
    affect or stance”. These would fall under the category of border signals in Dürscheid & Siever’s framework, but Na’aman et all further divide these into four categories: attitude, topic, gesture and other.

Based on analysis of a Twitter corpus made of up of only tweets containing emoji, the authors find that multimodal emoji encoding attitude are far and away the most common, making up over 50% of the emoji spans in their corpus. The next most common uses of emoji are to multimodal:topic and multimodal:gesture. Together, these three categories account for close to 90% of the all the emoji use in the corpus, corroborating the findings of Dürscheid & Siever.

Wood & Ruder, 2016:

Wood and Ruder provide further evidence that emoji are used to express emotion (or “attitude”, in Na’aman et al’s terms). They found a strong correlation between the presence of emoji that they had previously determined were associated with a particular emotion, like 😂 for joy or 😭 for sadness, and human annotations of the emotion expressed in those tweets. In addition, an emotion classifier using only emoji as input performed similarly to one trained using n-grams excluding emoji. This provides evidence that there is an established relationship between specific emoji use and expressing emotion.

Donato & Paggio, 2017:

However, the relationship between text and emoji may not always be so close. Donato & Paggio collected a corpus of tweets which contained at least one emoji and that were hand-annotated for whether the emoji was redundant given the text of the tweet.  For example, “We’ll always have Beer. I’ll see to it. I got your back on that one. 🍺” would be redundant, while “Hopin for the best 🎓” would not be, since the beer emoji expresses content already expressed in the tweet, while the motorboard adds new information (that the person is hoping to graduate, perhaps). The majority of emoji, close to 60%, were found not to be redundant and added new information to the tweet.

However, the corpus was intentionally balanced between ten topic areas, of which only one was feelings, and as a result the majority of feeling-related tweets were excluded from analysis. Based on this analysis and Wood and Ruder’s work, we might hypothesize that feelings-related emoji may be more redundant than other emoji from other semantic categories.

Barbieri et al, 2017:

Additional evidence for the idea that emoji, especially those that show emotion, are predictable given the text surrounding them comes from Barbieri et al. In their task, they removed the emoji from a thousand tweets that contained one of the following five emoji: 😂, ❤️, 😍, 💯 or 🔥. These emoji were selected since they were the most common in the larger dataset of half a million tweets. Then then asked human crowd workers to fill in the missing emoji given the text of the tweet, and trained a character-level bidirectional LSTM to do the same task. Both humans and the LSTM performed well over chance, with an F1 score of 0.50 for the humans and 0.65 for the LSTM.


So that was a lot of papers and results I just threw at you. What’s the big picture? There are two main points I want you to take away from this post:

  • People mostly use emoji to express emotion. You’ll see people playing around more than that, sure, but by far the most common use is to make sure people know what emotion you’re expressing with a specific message.
  • Emoji, particularly emoji that are used to represent emotions, are predictable given the text of the message. It’s pretty rare for us to actually use emoji to introduce new information, and we generally only do that when we’re using emoji that have a specific, transparent meaning.

If you’re interested in reading more, here are all the papers I mentioned in this post:

Bibliography:

Barbieri, F., Ballesteros, M., & Saggion, H. (2017). Are Emojis Predictable? EACL.

Donato, G., & Paggio, P. (2017). Investigating Redundancy in Emoji Use: Study on a Twitter Based Corpus. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (pp. 118-126).

Dürscheid, C., & Siever, C. M. (2017). Beyond the Alphabet–Communication of Emojis. Kurzfassung eines (auf Deutsch) zur Publikation eingereichten Manuskripts.

Gallmann, P. (1985). Graphische Elemente der geschriebenen Sprache. Grundlagen für eine Reform der Orthographie. Tübingen: Niemeyer.

Na’aman, N., Provenza, H., & Montoya, O. (2017). Varying Linguistic Purposes of Emoji in (Twitter) Context. In Proceedings of ACL 2017, Student Research Workshop (pp. 136-141).

Wood, I. & Ruder, S. (2016). Emoji as Emotion Tags for Tweets. Sánchez-Rada, J. F., & Schuller, B (Eds.). In Proceedings of LREC 2016, Workshop on Emotion and Sentiment Analysis (pp. 76-80).

Can your use of capitalization reveal your political affiliation?

This week, I’m in Vancouver this week for the meeting of the Association for Computational Linguistics. (On the subject of conferences, don’t forget that my offer to help linguistics students from underrepresented minorities with the cost of conferences still stands!) The work I’m presenting is on a new research direction I’m pursuing and I wanted to share it with y’all!

If you’ve read some of my other posts on sociolinguistics, you may remember that the one of its central ideas is that certain types of language usage pattern together with aspects of people’s social identities. In the US, for example, calling a group of people “yinz” is associated with being from Pittsburgh. Or in Spanish, replacing certain “s” sounds with “th” sounds is associated with being from northern or central Spain. When a particular linguistic form is associated with a specific part of someone’s social identity, we call that a “sociolinguistic variable”

There’s been a lot of work on the type of sociolinguistic variables people use when they’re speaking, but there’s been less work on what people do when they’re writing. And this does make a certain amount of sense: many sociolinguistic variables are either 1) something people aren’t aware they’re doing or 2) something that they’re aware they’re doing but might not consider “proper”. As a result, they tend not to show up in formal writing.

This is where the computational linguistics part comes in; people do a lot of informal writing on computers, especially on the internet. In fact, I’d wager that humans are producing more text now than at any other point in history, and a lot of it is produced in public places. That lets us look for sociolinguistics variables in writing in a way that wasn’t really possible before.

Which is a whole lot of background to be able to say: I’m looking at how punctuation and capitalization pattern with political affiliation on Twitter.

Political affiliation is something that other sociolinguists have definitely looked at. It’s also something that’s very, very noticeable on Twitter these days. This is actually a boon to this type of research. One of the hard things about doing research on Twitter is that you don’t always necessarily know someone’s social identity. And if you use a linguistic feature to try to figure out their identity when what you’re interested in is linguistic features, you quickly end up with the problem of circular logic.

Accounts which are politically active, however, will often explicitly state their political affiliation in their Twitter bio. And I used that information to get tweets from people I was very sure had a specific political affiliation.

For this project, I looked at people who use the hashtags #MAGA and #theResistance in their Twitter bios. The former is an initialism for “Make America Great Again” and is used by politically conservative folks who support President Trump. The latter is used by political liberal folks who are explicitly opposed to President Trump. These two groups not only have different political identities, but also are directly opposed to each other. This means there’s good reason to believe that they will use language in different ways that reflect that identity.

But what about the linguistic half of the equation? Punctuation and capitalization are especially interesting to me because they seem to be capturing some of the same information we might find in prosody or intonation in spoken language. Things like YELLING or…pausing….or… uncertainty?  They’re also much, much easier to measure punctuation than intonation, which is notoriously difficult and time-consuming to annotate.  At the same time, I have good evidence that how you use punctuation and capitalization has some social meaning. Check out this tweet, for example:

0b1022106daeb0d0419263dcf9c5aa93--this-is-me-posts
As this tweet shows, putting a capital letter at the beginning of a tweet is anything but “aloof and uninterested yet woke and humorous”.

So, if punctuation and capitalization are doing something socially, is part of what they’re doing expressing political affiliation?

That’s what I looked into. I grabbed up to 100 tweets each from accounts which used either #MAGA or #theResistance in their Twitter bios. Then I looked at how much punctuation and capitalization users from these two groups used in their tweets.

Punctuation

First, I looked at all punctuation marks. I did find that, on average, liberal users tended to use less punctuation. But when I took a closer look at the data, an interesting pattern emerged. In both the liberal and conservative groups, there were two clusters of users: those who used a lot of punctuation and those who used almost none.

punctuation
Politically liberal users on average tended to use less punctuation than politically conservative users, but in both groups there’s really two sets of users: those who use a lot of punctuation and those who use basically  none. There just happen to be more of the latter in #theResistance.

What gives rise to these two clusters? I honestly don’t know, but I do have a hypothesis. I think that there’s  probably a second social variable in this data that I wasn’t able to control for. It seems likely that the user’s age might have something to do with it, or their education level, or even whether they use thier Twitter account for professional or personal communication.

Capitalization

My intuition that there’s a second latent variable at work in this data is even stronger given the results for the amount of capitalization folks used. Conservative users tended to use more capitalization than the average liberal user, but there was a really strong bi-modal distribution for the liberal accounts.

Rplot
Again, we see that conservative accounts use more of the marker (in this case capitalization), but that there’s a strong bi-modal distribution in the liberal users’ data.

What’s more, the liberal accounts that used a lot of punctuation also tended to use a lot of capitalization. Since these features are both ones that I associate with very “proper” usage (things like always starting a tweet with a capital letter, and ending it with a period) this seems to suggest that some liberal accounts are very standardized in their use of language, while others reject at least some of those standards.

So what’s the answer the question I posed in the title? Can capitalization or punctuation reveal political affiliation? For now, I’m going to go with a solid “maybe”. Users who use very little capitalization and punctuation are more likely to be liberal… but so are users who use a lot of both. And, while I’m on the subject of caveats, keep in mind that I was only looking at very politically active accounts who discuss thier politics in their user bios.  These observations probably don’t apply to all Twitter accounts (and certainly not across different languages).

If you’re interested in reading more, you can check out the fancy-pants versions of this research here and here.  And I definitely intend to consider looking at this; I’ll keep y’all posted on my findings. For now, however, off to find me a Nanimo bar!

What’s up with calling a woman “a female”? A look at the parts of speech of “male” and “female” on Twitter .

This is something I’ve written about before, but I’ve recently had several discussions with people who say they don’t find it odd to refer to a women as a female. Personally, I don’t like being called “a female” becuase its a term I to associate strongly with talking about animals. (Plus, it makes you sound like a Ferengi.)  I would also protest men being called males, for the same reason, but my intuition is that that doesn’t happen as often. I’m willing to admit that my intuition may be wrong in this case, though, so I’ve decided to take a more data-driven approach. I had two main questions:

  • Do “male” and “female” get used as nouns at different rates?
  • Does one of these terms get used more often?

Data collection

I used the Twitter public API to collect two thousand English tweets, one thousand each containing the exact string “a male” and “a female”. I looked for these strings to help get as many tweets as possible with “male” or “female” used as a noun. “A” is what linguist call a determiner, and a determiner has to have a noun after it. It doesn’t have to be the very next word, though; you can get an adjective first, like so:

  • A female mathematician proved the theorm.
  • A female proved the theorm.

So this will let me directly compare these words in a situation where we should only be able to see a limited number of possible parts of speech & see if they differ from each other. Rather than tagging two thousand tweets by hand, I used a Twitter specific part-of-speech tagger to tag each set of tweets.

A part of speech tagger is a tool that guesses the part of speech of every word in a text. So if you tag a sentence like “Apples are tasty”, you should get back that “apples” is a plural noun, “are” is a verb and “tasty” is an adjective. You can try one out for yourself on-line here.

Parts of Speech

In line with my predictions, every instance of “male” or “female” was tagged as either a noun, an adjective or a hashtag. (I went through and looked at the hashtags and they were all porn bots. #gross #hazardsOfTwitterData)

However, not every noun was tagged as the same type of noun. I saw three types of tags in my data: NN (regular old noun), NNS (plural noun) and, unexpectedly, NNP (proper noun, singular). (If you’re confused by the weird upper case abbreviations, they’re the tags used in the Penn Treebank, and you can see the full list here.) In case it’s been a while since you studied parts of speech, proper nouns are things like personal or place names. The stuff that tend to get capitalized in English. The examples from the Penn Treebank documentation include “Motown”, “Venneboerger”,  and “Czestochwa”. I wouldn’t consider either “female” or “male” a name, so it’s super weird that they’re getting tagged as proper nouns. What’s even weirder? It’s pretty much only “male” that’s getting tagged as a proper noun, as you can see below:

maleVsFemalePOS
Number of times each word tagged as each part of speech by the GATE Twitter part-of-speech tagger. NNS is a plural noun, NNP a proper noun, NN a noun and JJ an adjective.

The differences in tagged POS between “male” and “female” was super robust(X2(6, N = 2033) = 1019.2, p <.01.). So what’s happening here?  My first thought was that it might be that, for some reason, “male” is getting capitalized more often and that was confusing the tagger. But when I looked into, there wasn’t a strong difference between the capitalization of “male” and “female”: both were capitalized about 3% of the time. 

My second thought was that it was a weirdness showing up becuase I used a tagger designed for Twitter data. Twitter is notoriously “messy” (in the sense that it can be hard for computers to deal with) so it wouldn’t be surprising if tagging “male” as a proper noun is the result of the tagger being trained on Twitter data. So, to check that, I re-tagged the same data using the Stanford POS tagger. And, sure enough, the weird thing where “male” is overwhelming tagged as a proper noun disappeared.

stanfordTaggerPOS
Number of times each word tagged as each part of speech by the Stanford POS tagger. NNS is a plural noun, NNP a proper noun, NN a noun, JJ an adjective and FW a “foreign word”.

So it looks like “male” being tagged as a proper noun is an artifact of the tagger being trained on Twitter data, and once we use a tagger trained on a different set of texts (in this case the Wall Street Journal) there wasn’t a strong difference in what POS “male” and “female” were tagged as.

Rate of Use

That said, there was a strong difference between “a female” and “a male”: how often they get used. In order to get one thousand tweets with the exact string “a female”, Twitter had to go back an hour and thirty-four minutes. In order to get a thousand tweets with “a male”, however, Twitter had to go back two hours and fifty eight minutes. Based on this sample, “a female” gets said almost twice as often as “a male”.

So what’s the deal?

  • Do “male” and “female” get used as nouns at different rates?  It depends on what tagger you use! In all seriousness, though, I’m not prepared to claim this based on the dataset I’ve collected.
  • Does one of these terms get used more often? Yes! Based on my sample, Twitter users use “a female” about twice as often as “a male”.

I think the greater rate of use of “a female” that points to the possibility of an interesting underlying difference in how “male” and “female” are used, one that calls for a closer qualitative analysis. Does one term get used to describe animals more often than the other? What sort of topics are people talking about when they say “a male” and “a female”? These questions, however, will have to wait for the next blog post!

In the meantime, I’m interested in getting more opinions on this. How do you feel about using “a male” and “a female” as nouns to talk about humans? Do they sound OK or strike you as odd?

My code and is available on my GitHub.

What’s the difference between & and +?

So if you’re like me, you sometimes take notes on the computer and end up using some shortcuts so you can keep up with the speed of whoever’s talking. One of the short cuts I use a lot is replacing the word “and” with punctuation. When I’m handwriting things I only ever use “+” (becuase I can’t reliably write an ampersand), but in typing I use both “+” and “&”. And I realized recently, after going back to change which one I used, that I had the intuition that they should be used for different things.

Ampersand-handwriting-3.png
I don’t use Ampersands when I’m handwriting things becuase they’re hard to write.

Like sometimes happens with linguistic intuitions, though, I didn’t really have a solid idea of how they were different, just that they were. Fortunately, I had a ready-made way to figure it out. Since I use both symbols on Twitter quite a bit, all I had to do was grab tweets of mine that used either + or & and figure out what the difference was.

I got 450 tweets from between October 7th and November 11th of this year from my own account (@rctatman). I used either & or + in 83 of them, or roughly 18%. This number is a little bit inflated because I was livetweeting a lot of conference talks in that time period, and if a talk has two authors I start every livetweet from that talk with “AuthorName1 & AuthorName2:”. 43 tweets use & in this way. If we get rid of those, only around 8% of my tweets contain either + or &. They’re still a lot more common in my tweets than in writing in other genres, though, so it’s still a good amount of data.

So what do I use + for? See for yourself! Below are all the things I conjoined with + in my Twitter dataset. (Spelling errors intact. I’m dyslexic, so if I don’t carefully edit text—and even sometimes when I do, to my eternal chagrin—I tend to have a lot of spelling errors. Also, a lot of these tweets are from EMNLP so there’s quite a bit of jargon.)

  • time + space
  • confusable Iberian language + English
  • Data + code
  • easy + nice
  • entity linking + entity clustering
  • group + individual
  • handy-dandy worksheet + tips
  • Jim + Brenda, Finn + Jake
  • Language + action
  • linguistic rules + statio-temporal clustering
  • poster + long paper
  • Ratings + text
  • static + default methods
  • syntax thing + cattle
  • the cooperative principle + Gricean maxims
  • Title + first author
  • to simplify manipulation + preserve struture

If you’ve had some syntactic training, it might jump out to you that most of these things have the same syntactic structure: they’re noun phrases! There are just a couple of exception. The first is “static + default methods”, where the things that are being conjoined are actually adjectives modifying a single noun. The other is “to simplify manipulation + preserve struture”. I’m going to remain agnostic about where in the verb phrase that coordination is taking place, though, so I don’t get into any syntax arguments ;). That said, this is a fairly robust pattern! Remember that I haven’t been taught any rules about what I “should” do, so this is just an emergent pattern.

Ok, so what about &? Like I said, my number one use is for conjunction of names. This probably comes from my academic writing training. Most of the papers I read that use author names for in-line citations use an & between them. But I do also use it in the main body of tweets. My use of & is a little bit harder to characterize, so I’m going to go through and tell you about each type of thing.

First, I use it to conjoin user names with the @ tag. This makes sense, since I have a strong tendency to use & with names:

  • @uwengineering & @uwnlp
  • @amazon @baidu @Grammarly & @google

In some cases, I do use it in the same way as I do +, for conjoining noun phrases:

  • Q&A
  • the entities & relations
  • these features & our corpus
  • LSTM & attention models
  • apples & concrete
  • context & content

But I also use it for comparatives:

  • Better suited for weak (bag-level) labels & interpretable and flexible
  • easier & faster

And, perhaps more interestingly, for really high-level conjugation, like at the level of the sentence or entire verb phrase (again, I’m not going to make ANY claims about what happens in and around verbs—you’ll need to talk to a syntactician for that!).

  • Classified as + or – & then compared to polls
  • in 30% of games the group performance was below average & in 17% group was worse than worst individual
  • math word problems are boring & kids learn better if they’re interested in the theme of the problem
  • our system is the first temporal tagger designed for social media data & it doesn’t require hand tagging
  • use a small labeled corpus w/ small lexicon & choose words with high prob. of 1 label

And, finally, it gets used in sort of miscellaneous places, like hashtags and between URLs.

So & gets used in a lot more places than + does. I think that this is probably because, on some subconscious level I consider & to be the default (or, in linguistics terms, “unmarked“). This might be related to how I’m processing these symbols when I read them. I’m one of those people who hears an internal voice when reading/writing, so I tend to have canonical vocalizations of most typed symbols. I read @ as “at”, for example, and emoticons as a prosodic beat with some sort of emotive sound. Like I read the snorting emoji as the sound of someone snorting. For & and +, I read & as “and” and + as “plus”. I also use “plus” as a conjunction fairly often in speech, as do many of my friends, so it’s possible that it may pattern with my use in speech (I don’t have any data for that, though!). But I don’t say “plus” nearly as often as I say “and”. “And” is definitely the default and I guess that, by extension, & is as well.

Another thing that might possibly be at play here is ease of entering these symbols. While I’m on my phone they’re pretty much equally easy to type, on a full keyboard + is slightly easier, since I don’t have to reach as far from the shift key. But if that were the only factor my default would be +, so I’m fairly comfortable claiming that the fact that I use & for more types of conjunction is based on the influence of speech.

A BIG caveat before I wrap up—this is a bespoke analysis. It may hold for me, but I don’t claim that it’s the norm of any of my language communities. I’d need a lot more data for that! That said, I think it’s really neat that I’ve unconsciously fallen into a really regular pattern of use for two punctuation symbols that are basically interchangeable. It’s a great little example of the human tendency to unconsciously tidy up language.

Do you tweet the way you speak?

So one of my side projects is looking at what people are doing when they choose to spell something differently–what sort of knowledge about language are we encoding when we decide to spell “talk” like “tawk”, or “playing” like “pleying”? Some of these variant spelling probably don’t have anything to do with pronunciation, like “gawd” or “dawg”, which I think are more about establishing a playful, informal tone. But I think that some variant spellings absolutely are encoding specific pronunciation. Take a look at this tweet, for example (bolding mine):

There are three different spelling here, two which look like th-stopping (where the “th” sound as in “that” is produced as a “d” sound instead) and one that looks like r-lessness (where someone doesn’t produce the r sound in some words). But unfortunately I don’t have a recording of the person who wrote this tweet; there’s no way I can know if they produce these words in the same way in their speech as they do when typing.

Fortunately, I was able to find someone who 1) uses variant spellings in their Twitter and 2) I could get a recording of:

This let me directly compare how this particular speaker tweets to how they speak. So what did I find? Do they tweet the same way they speak? It turns out that that actually depends.

  • Yes! For some things (like the th-stopping and r-lessness like I mentioned above) this person does tweet and speak in pretty much the same way. They won’t use an “r” in spelling where they wouldn’t say an “r” sound and vice versa.
  • No! But for other things (like saying “ing” words “in” or saying words like “coffin” and “coughing” with a different vowel in the first syllable) while this person does them a lot in thier speech, they aren’t using variant spellings at the same level in thier tweets. So they’ll say “runnin” 80% of the time, for example, but type it as “running” 60% of the time (rather than 20%, which is what we’d expect if the Twitter and speech data were showing the same thing).

So what’s going on? Why are only some things being used in the same way on Twitter and in speech? To answer that we’ll need to dig a little deeper into the way these things in speech.

  • How are th-stopping and r-lessness being used in speech? So when you compare the video above to one of the sports radio announcer that’s being parodied (try this one) you’ll find that they’re actually used more in the video above than they are in the speech that’s being parodied. This is pretty common in situations where someone’s really laying on a particular accent (even one they speak natively), which sociolinguists call a performance register.
  • What about the other things? The things that aren’t being used as often Twitter as they are on speech, on the other hand, actually show up at the same levels in speech, both for the parody and the original. This speaker isn’t overshooting thier use of these features; instead they’re just using them in the way that another native speaker of a dialect would.

So there’s a pretty robust pattern showing up here. This person is only tweeting the way they speak for a very small set of things: those things that are really strongly associated with this dialect and that they’re really playing up in thier speech. In other words, they tend to use the things that they’re paying a lot of attention to in the same way both in speech and on Twitter. That makes sense. If you’re very careful to do something when you’re talking–not splitting an infinitive or ending a sentence with a preposition, maybe–you’re probably not going to do it when you’re talking. But if there’s something that you do all the time when you’re talking and aren’t really aware of then it probably show up in your writing. For example, there are lots of little phrases I’ll use in my speech (like “no worries”, for example) that I don’t think I’ve ever written down, even in really informal contexts. (Except for here, obviously.)

So the answer to whether tweets and speech act the same way is… is depends. Which is actually really useful! Since it looks like it’s only the things that people are paying a lot of attention to that get overshot in speech and Twitter, this can help us figure out what things people think are really important by looking at how they use them on Twitter. And that can help us understand what it is that makes a dialect sound different, which is useful for things like dialect coaching, language teaching and even helping computers understand multiple dialects well.

(BTW, If you’re interested in more details on this project, you can see my poster, which I’ll be presenting at NWAV44 this weekend, here.)

Tweeting with an accent

I’m writing this blog post from a cute little tea shop in Victoria, BC. I’m up here to present at the Northwest Linguistics Conference, which is a yearly conference for both Canadian and American linguists (yes, I know Canadians are Americans too, but United Statsian sounds weird), and I thought that my research project may be interesting to non-linguists as well. Basically, I investigated whether it’s possible for Twitter users to “type with an accent”. Can linguists use variant spellings in Twitter data to look at the same sort of sound patterns we see in different speech communities?

Picture of a bird saying
Picture of a bird saying “Let’s Tawk”. Taken from the website of the Center for the Psychology of Women in Seattle. Click for link.

So if you’ve been following the Great Ideas in Linguistics series, you’ll remember that I wrote about sociolinguistic variables a while ago. If you didn’t, sociolinguistic variables are sounds, words or grammatical structures that are used by specific social groups. So, for example, in Southern American English (representing!) the sound in “I” is produced with only one sound, so it’s more like “ah”.

Now, in speech these sociolinguistic variables are very well studied. In fact, the Dictionary of American Regional English was just finished in 2013 after over fifty years of work. But in computer mediated communication–which is the fancy term for internet language–they haven’t been really well studied. In fact, some scholars suggested that it might not be possible to study speech sounds using written data. And on the surface of it, that does make sense. Why would you expect to be able to get information about speech sounds from a written medium? I mean, look at my attempt to explain an accent feature in the last paragraph. It would be far easier to get my point across using a sound file. That said, I’d noticed in my own internet usage that people were using variant spellings, like “tawk” for “talk”, and I had a hunch that they were using variant spellings in the same way they use different dialect sounds in speech.

While hunches have their place in science, they do need to be verified empirically before they can be taken seriously. And so before I submitted my abstract, let alone gave my talk, I needed to see if I was right. Were Twitter users using variant spellings in the same way that speakers use different sound patterns? And if they are, does that mean that we can investigate sound  patterns using Twitter data?

Since I’m going to present my findings at a conference and am writing this blog post, you can probably deduce that I was right, and that this is indeed the case. How did I show this? Well, first I picked a really well-studied sociolinguistic variable called the low back merger. If you don’t have the merger (most African American speakers and speakers in the South don’t) then you’ll hear a strong difference between the words “cot” and “caught” or “god” and “gaud”. Or, to use the example above, you might have a difference between the words “talk” and “tock”. “Talk” is little more backed and rounded, so it sounds a little more like “tawk”, which is why it’s sometimes spelled that way. I used the Twitter public API and found a bunch of tweets that used the “aw” spelling of common words and then looked to see if there were other variant spellings in those tweets. And there were. Furthermore, the other variant spellings used in tweets also showed features of Southern American English or African American English. Just to make sure, I then looked to see if people were doing the same thing with variant spellings of sociolinguistic variables associated with Scottish English, and they were. (If you’re interested in the nitty-gritty details, my slides are here.)

Ok, so people will sometimes spell things differently on Twitter based on their spoken language dialect. What’s the big deal? Well, for linguists this is pretty exciting. There’s a lot of language data available on Twitter and my research suggests that we can use it to look at variation in sound patterns. If you’re a researcher looking at sound patterns, that’s pretty sweet: you can stay home in your jammies and use Twitter data to verify findings from your field work. But what if you’re not a language researcher? Well, if we can identify someone’s dialect features from their Tweets then we can also use those features to make a pretty good guess about their demographic information, which isn’t always available (another problem for sociolinguists working with internet data). And if, say, you’re trying to sell someone hunting rifles, then it’s pretty helpful to know that they live in a place where they aren’t illegal. It’s early days yet, and I’m nowhere near that stage, but it’s pretty exciting to think that it could happen at some point down the line.

So the big take away is that, yes, people can tweet with an accent, and yes, linguists can use Twitter data to investigate speech sounds. Not all of them–a lot of people aren’t aware of many of their dialect features and thus won’t spell them any differently–but it’s certainly an interesting area for further research.